
Distributed Version 
Control For Small 
Teams And Solo 
Developers
Abizer Nasir



Scope

!

"

Why you should consider using a DVCS, some 
common operations for local and distributed 
use and links to further information.

Not a recommendation for a particular 
system, nor a command reference.

Git! Woo-Hoo!



Centralised Systems

There is only one 
repository.

All changes are public.

Requires an active 
connection.



Distributed Systems

There can be more than 
one repository.

Not all changes need to be 
public.

Works offline.



Distributed Systems

There can be more than 
one repository.

Not all changes need to be 
public.

Works offline.

Repositories don’t need to be exact copies.

No repository needs to be canonical



Version Control

• Store snapshots of a project.

• See the differences between these snapshots.

• Maintain multiple lines of development.

• Roll back changes to a previous snapshot.

• Work with other developers.

• Distributed - deal with other repositories.



Commit
This is what creates a snapshot



Commit
This is what creates a snapshot

Identifier, parent
‘Who’, ‘When’,
‘What’, ‘Why’



Branches
Multiple lines of history

master



Branches
Multiple lines of history

master bugfix



Merging
Pulling changes back together

master

bugfix



Merging
Pulling changes back together

master

bugfix
The branch remains 
until you get rid of it



Tags
A simple way to refer to a change

master

bugfix

v1.1



Tags
A simple way to refer to a change

master

v1.1



Pushing

• Propagating changes to other repositories.

• Don’t have to worry about making all changes 
public.

• Don’t change history once a set of changes is 
public.

• There are online services that take away the 
pain of managing a public repository.



Pulling

• Adding the changes in public repositories to 
your local one.

• Merge can be automatic or manual.

• Conflicts are bound to happen, but relatively 
easy to deal with.



Disadvantages

• Repositories can and do get out of sync.

• Merge conflicts can be difficult to deal with.

• There is a lot to learn.

• Graphical interfaces are still maturing.



Git

• Written in C

• Fast, powerful, but can be confusing.

• GitHub!



Mercurial

• Written in Python

• Fast

• Fewer commands to learn, but can be just as 
functional with add-ons

• BitBucket 



Pick a system that works 
with your own workflow. 
Learn it well, and get on 
with solving problems

Use Git



@abizern

365git.tumblr.com


