Advanced Git

A Taster Menu

Abizer Nasir ¢ @abizern < 365git.tumblr.com < abizern.org

Scope

e This is not a full discussion about Git.

e Just a taster menu. A presentation of workflows and tips that
should get you thinking about more than committing, merging,

pushing and pulling.

e Git is there to support your workflow (within reason), you
shouldn’t be the one jumping through hoops to work with it.

add

am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone

commit
describe
diff
fetch

format-patch
gc

grep

gui

1nit

log
merge
my
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash

132 Commands

status
submodule
tag

gitk

apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
Is-files
Is-remote
Is-tree
merge-base
name-rev
packredundant
rev-list

show-index
show-ref
tar-tree
unpack-file

var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found

mergetool
pack-refs
prune

reflog

relink
remote
repack
replace
repo-config
annotate
blame

cherry
count-objects
difttool

fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

add

am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone

commit
describe
diff
fetch

format-patch
gc

grep

gui

nit

log
merge
my
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash

status
submodule
tag

gitk

apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
Is-files
Is-remote
Is-tree
merge-base
name-rev
pack-redundant
rev-list

show-index
show-ref
tar-tree
unpack-file

var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found

Porcelain / Plumbing

mergetool
pack-refs
prune

reflog

relink
remote
repack
replace
repo-config
annotate
blame

cherry
count-objects
difftool

fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

Starter

Commit Messages

e Use the present imperative
tense.

046613c update-index --refresh --porcelain: aodd missing const
b3cB494 checkout: odd missing const to describe_detached _head
dca3d71 MNe bronch 'moint’

4ccb260 Documentation: clomify -uamode> option defoults

® ‘C:lange, nOt ‘Changes,’ abbceeZ Merge branch 'maint’

dsa/19%e t S00-commit.sh: use test_cmp instead of test

¢] J ¢ p) 49151d8 t/gitweb-lib.sh: Ensure that errors are shown for --debug --immediate
a not S Or 98885¢2 /gitweb.perl: don't call S_ISREGO) with undef

0f54b7d gitweb/gitweb.perl: remove use of gw(...) as parentheses

¢] b 5673d69 Merge branch 'maint’
aC e ° 759e84f Merge branch 'maint-1.7.3' into maint
od

dooS6f1l Merge branch 'maint-1.7.2" into mo

©a7f71d Merge brorg ‘moint-1, !

206af7¢c Merge bronch 'moint-1.7.90' into moint-1.7.1
8559425 se_tog buffer(): do not prefixcamp() out of range
43f9f05 Merge branch 'maint’

D 'b h 1 ¥ h 242310 do not display fetch usage on --help-all
® eSCrl e W at app y1ng t e cfbSebb git-tog.txt: list all modes in the description
8547099 commit,stotus: describe -u likewise
©8918e4 odd: describe patch like checkout, reset

L] L]
Commlt Wlll dO, nOt What 3‘4%5.’ ‘:n:mxt.m;"ge,’ : describe -m ‘.\kev;xse
S5027fa8 clone,init: d ribe --template using the some wording
you did.

1nto mon

{
7
7
7

ba9d7fe commit, stotus: describe --porcelain just like push

e Matches system generated
output.

Mains

Late night bug fixing

feature Code

You're working on a feature in it’s own branch.

feature Code

You realise that you have a bug to fix.

You stash your current work and create a bugfix branch oft master

stash@{o)

stash@{o)

Fix the bug

Amend feature

You get carried away with the fix and add a bit more to the feature.

stash@{o)

Amend feature

Using “git add -p° you add the bits of code that fix the bug to the

index and commit just that.

stash@{1}

stash@{o}

Stash the extra changes that add the feature.

stash@{1}

stash@{o}

 stash@fr)

- stash@{o}

Merge the changes back into the master branch.

stash@{1}

stash@{o}

 sash@{t)

- stash@{o}

Rebase the feature branch onto the master branch

Pop the stashes onto the feature branch one at a time and fix any
merge conflicts.

Early morning witch-hunt

Somehow, a bug appeared between two states of the codebase. And you
have to find out where.

You create a test for the bug and run “git bisect'.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Use “git log™ to show who checked in the commit, and “git diff" to see the
code that introduced the bug.

Tired of typing long

commands’

Simple - shell aliases

For simple one liners, use
shell aliases. This is for zsh.

I don’t use too many; just
the ones I use commonly.

Don’t need to prefix with
git .

Keep them simple so that
other options may be

added.

gst="git status'
gd=Hgait id it
gdt="git difftool’
gl="git pull’

gp="git push’

gc="git commit'
gca='git commit -a'
gb="git branch'
gco="'glt checkout"’
gba="'git branch -a'
gsb="git show-branch'’
gka="gitk ——all &'
glo='git log ——oneline’

Complex - Git Aliases

(it aliases are in [alias]

the .gitconfig file. st = status

CO checkout
dt difftool
k = Igitk

Can be local to the
reposItory.

Prefix with °!” to expand the
shortcut in the shell. (useful git config alias.install '!

for multiline commands) sudo —-v && make —j5 all
prefix=/usr/local

| : NO_DARWIN_PORTS=yes && sudo
The last is an example of a make install prefix=/usr/local
local alias for git that will NO_DARWIN PORTS=yes && git
build the latest version and archive origin/man | sudo tar
Al S e |4 xvC /usr/local/share/man'

What have I done?

git reflog

e When the tip of a branch is
updated, this is recorded in the
reflog

eZb1196 HEAD@{0}: commit: Transfer half baked code
6211495 HEAD@{1}: commit: Remove the leftover AvailableCardsView class
4af794c HEAD®{2}: commit (amend): Add the J(SSheetController to the main project

ThlS IS how you can tI'aCk 8ecd89¢ HEAD®{3}: commit: Add the J(SSheetController to the main project

36690d7 HEAD®{4}: commit: Add J(SSheetController as a submodule.

mm' c15cb7b HEAD@{S}: rebase -i (pick): Tidy up the PickerSheetController
CO ltS that arc nOt on any 52d7b82 HEAD@{6}: rebase -1 (pick): Add the stub PickerSheetController to the pr

branCheS, and Why lt iS Said that e5081c0 HEAD@{7}: rebase -1 (pick): Refactor the broadcast card view toggle.

30b13a6 HEAD®{8}: rebase -1 (pick): Remove 1sCardShowing from public properties
) < < cSfb82c HEAD@{9}: rebase -1 (pick): Rename toggleCard: to toggleBroadcast(ardVie
you dont IOSC data 1n Glt' 11646b2 HEAD®{10}: rebase -1 (pick): Turn on standard set of compiler warnings
2828a16 HEAD®{11}: checkout: moving from UL to 2828a16dcl06f87b28ddf Belbae9eS52a7
abebb9¢c HEAD@{12}: commit: Turn on standard set of compiler warnings
! 299758¢c HEAD®{13}: rebase -i (pick): Tidy up the PickerSheetController
It can be pruned’ as Wlth 099722b HEAD®{14}: rebase -1 (pick): Add the stub PickerSheetController to the p
X . A 737a30f HEAD@{15}: rebase -i (pick): Refactor the broadcast card view toggle.
I‘epOSltorleS. Although’ as Wlth a775ef3 HEAD®{16}: rebase -1 (reword): Remove isCardShowing from public properti
[! h] d20bd97 HEAD@{17}: cherry-pick
b99ca30 HEAD@{18}: checkout: moving from UI to b9%3ca3®
repOSItorleS, nOt everyt lng 1 eedoed8 HEAD®{19}: rebase -1 (pick): Tidy up the PickerSheetController
tldled up_ 825f4c8 HEAD@{20}: rebase -1 (pick): Add the stub PickerSheetController to the p
d120416 HEAD@{21}: rebase -i (pick): Refactor the broadcast card view toggle.
d20bd97 HEAD®{22}: checkout: moving from UL to d20bd97

]

The changes to the local
repository are recorded. So
history is not leaked.

Reading blobs

git show

e This is useful for presenting objects in a human readable format.
e The contents of a file.
e The contents of a tree (but not subtrees).
e The message of a commit and the dift.

e Most useful for commits and tags.

git Is-tree

o Better than git show for viewing trees, because it gives the
hashes of the trees and blobs that it points to.

e -r recursively shows subtrees.

e -t shows the hashes of the subtrees as well.

git cat-file

e Extracts the contents of individual blobs.
e -t shows the type of the object instead of the contents.

e -p pretty print the contents based on the type.

History is written by the

VICtOTrS

Changing history is bad.

e If the repository has been cloned and someone else is working
on changes, modifying the history means that they will have to
do some work to reconcile the differences.

e This is why I recommend "git fetch™ and manually merging
upstream changes.

Changing history is not bad.

local development branches — not shared with anyone.

local branches used for syncing — your codebase, so you know
what state it’s in.

A quick “git commit —amend” before anyone is likely to work on

the push.
You can always just re-clone the repository if it messes up.

“git pull —rebase’ is a handy command.

Playing hooky

Iriggering actions

e Installed in the .git/hooks directory, but disabled by default.
e Samples are shell scripts, but any executable will work.
e local to repository.

e Run tests.

e Check code layout.

e (Close tickets when written in the correct format.

o Twitter, facebook, email.

Too many branches?

Branches are cheap, but it can be distracting to have to deal with too many
of them.

Replace them with tags so they don’t show up in the list of branches.
Recreate the branch by branching off the tag.

Independent branches

master

master

Branches can be independent of each other. Related items such as
documentation, marketing screenshots, App Store copy etc. can be put
into their own branches.

Composition not inheritance

git submodules

A git repository within a git repository. Can be recursive

The super repository checks out the submodule at a specific
hash, so upstream changes will not suddenly appear.

Two stage creation may seem odd, but it means that the
submodule that is part of the general repository need not be the
same as the local repository:

Always push submodule changes before pushing super
repository changes.

Clean production branches

It is common to have helper

classes that are developed
with scaffolding code.

Create a production branch
that has this scaffolding DI
removed.

Keep it up to date by
rebasing.

Easy to import as
submodules.

Dessert

533b7039 git-pull.sh
b10ac50f git-pull-script
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh
d38a3edf git-pull.sh

(Junio C Hamano
(Junio C Hamano

(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu
(Matthieu

197x42

2007-01-12
2005-08-25
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12
2010-01-12

cd_to_toplevel

die_conflict () {
git diff-index --cached --n
if [$€git config --bool --
die "Pull is not possible b
Please, fix them up in the work
as appropriate to mark resoluti
else
die "Pull is not possible b
fi
}

die_merge () {
if [$€git config --bool --
die "You have not concluded
Please, commit your changes bef
else
die "You have not concluded
fi
}

test -z "${git 1ls-files -u)" ||
test -f "$GIT_DIR/MERGE_HEAD" &

o d1014a17 git-pull.sh (Junio C Hamano 2006-12-31

v|[2] <ok+++TI/-Tmp-/vMaM16q/@.fugitiveblame [-][Git(master)l]22,71 <Git(master)]36,0-1

git blame

Cheese

Assert your mastery!

e You are capable of handling much bigger abstractions than git.

e You don’t take the easy way out with your code; do the same
with your version control.

e At the very least, remember the object model — blobs collected
into trees collected into commits. Branches, tags, remotes, notes,
are all simple constructs built on top of that.

e Coftee /liquers at
the Red Lion in
Kingly street

Abizer Nasir ¢ @abizern ¢ 365git.tumblr.com ¢ abizern.org

