
Advanced Git
A Taster Menu

Abizer Nasir ◇ @abizern ◇ 365git.tumblr.com ◇ abizern.org

Scope

• This is not a full discussion about Git.

• Just a taster menu. A presentation of workflows and tips that
should get you thinking about more than committing, merging,
pushing and pulling.

• Git is there to support your workflow (within reason), you
shouldn’t be the one jumping through hoops to work with it.

add
am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone
commit
describe
diff
fetch
format-patch
gc
grep
gui
init
log
merge
mv
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash

status
submodule
tag
gitk
apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
ls-files
ls-remote
ls-tree
merge-base
name-rev
pack-redundant
rev-list

show-index
show-ref
tar-tree
unpack-file
var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found

mergetool
pack-refs
prune
reflog
relink
remote
repack
replace
repo-config
annotate
blame
cherry
count-objects
difftool
fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

132 Commands

add
am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone
commit
describe
diff
fetch
format-patch
gc
grep
gui
init
log
merge
mv
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash

status
submodule
tag
gitk
apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
ls-files
ls-remote
ls-tree
merge-base
name-rev
pack-redundant
rev-list

show-index
show-ref
tar-tree
unpack-file
var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found

mergetool
pack-refs
prune
reflog
relink
remote
repack
replace
repo-config
annotate
blame
cherry
count-objects
difftool
fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

Porcelain / Plumbing

Starter

Commit Messages

• Use the present imperative
tense.

• ‘Change’ not ‘Changes’,
‘Add’ not ‘Adds’ or
‘added’.

• Describe what applying the
commit will do, not what
you did.

• Matches system generated
output.

Mains

Late night bug fixing

master

feature

feature Code

head

master

feature

feature Code

You’re working on a feature in it’s own branch.

head

master

feature

feature Code

head

master

feature

feature Code

You realise that you have a bug to fix.

head

master

featurehead

master

feature

stash@{0}

You stash your current work and create a bugfix branch off master

head

bugfix

master

feature

stash@{0}
head

bugfix

master

feature

stash@{0}

You get carried away with the fix and add a bit more to the feature.

head

bugfix

Amend feature

Fix the bug

master

feature

stash@{0}

Amend feature

master

feature

stash@{0}

Using `git add -p` you add the bits of code that fix the bug to the
index and commit just that.

head

Amend feature

bugfix

master

feature

head

bugfix

master

feature

stash@{1}

Stash the extra changes that add the feature.

head

stash@{0}

bugfix

feature

stash@{1}

head

stash@{0}

bugfix

feature

stash@{1}

Merge the changes back into the master branch.

head

stash@{0}

bugfix

master

feature

stash@{1}head

stash@{0}

bugfix

master

feature

stash@{1}

Rebase the feature branch onto the master branch

head

stash@{0}

bugfix

master

feature

head

bugfix

master

feature

Feature code

Pop the stashes onto the feature branch one at a time and fix any
merge conflicts.

head

Amend feature

bugfix

master

Early morning witch-hunt

Bu$y

Good

Bu$y

Good

Somehow, a bug appeared between two states of the codebase. And you
have to find out where.

Bu$y

Good

Bu$y

Good

You create a test for the bug and run `git bisect`.

Bu$y

Good

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Bu$y

Good

Git runs a binary search algorithm to check out commits and find the first
one that causes the test to fail.

Culprit

Bu$y

Good

Culprit

Bu$y

Good

Use `git log` to show who checked in the commit, and `git diff` to see the
code that introduced the bug.

Culprit

Tired of typing long
commands?

Simple - shell aliases

• For simple one liners, use
shell aliases. This is for zsh.

• I don’t use too many; just
the ones I use commonly.

• Don’t need to prefix with
`git`.

• Keep them simple so that
other options may be
added.

alias gst='git status'
alias gd='git diff'
alias gdt='git difftool'
alias gl='git pull'
alias gp='git push'
alias gc='git commit'
alias gca='git commit -a'
alias gb='git branch'
alias gco='git checkout'
alias gba='git branch -a'
alias gsb='git show-branch'
alias gka='gitk --all &'
alias glo='git log --oneline'

Complex - Git Aliases
• Git aliases are in

the .gitconfig file.

• Can be local to the
repository.

• Prefix with `!` to expand the
shortcut in the shell. (useful
for multiline commands)

• The last is an example of a
local alias for git that will
build the latest version and
install the man files.

[alias]
 st = status
 co = checkout
 dt = difftool
 k = !gitk

git config alias.install '!
sudo -v && make -j5 all
prefix=/usr/local
NO_DARWIN_PORTS=yes && sudo
make install prefix=/usr/local
NO_DARWIN_PORTS=yes && git
archive origin/man | sudo tar
xvC /usr/local/share/man'

What have I done?

git reflog
• When the tip of a branch is

updated, this is recorded in the
reflog

• This is how you can track
commits that are not on any
branches, and why it is said that
you don’t lose data in Git.

• It can be pruned, as with
repositories. Although, as with
repositories, not everything is
tidied up.

• The changes to the local
repository are recorded. So
history is not leaked.

Reading blobs

git show

• This is useful for presenting objects in a human readable format.

• The contents of a file.

• The contents of a tree (but not subtrees).

• The message of a commit and the diff.

• Most useful for commits and tags.

git ls-tree

• Better than git show for viewing trees, because it gives the
hashes of the trees and blobs that it points to.

• -r recursively shows subtrees.

• -t shows the hashes of the subtrees as well.

git cat-file

• Extracts the contents of individual blobs.

• -t shows the type of the object instead of the contents.

• -p pretty print the contents based on the type.

History is written by the
victors

Changing history is bad.

• If the repository has been cloned and someone else is working
on changes, modifying the history means that they will have to
do some work to reconcile the differences.

• This is why I recommend `git fetch` and manually merging
upstream changes.

Changing history is not bad.

• local development branches – not shared with anyone.

• local branches used for syncing – your codebase, so you know
what state it’s in.

• A quick `git commit --amend` before anyone is likely to work on
the push.

• You can always just re-clone the repository if it messes up.

• `git pull --rebase` is a handy command.

Playing hooky

Triggering actions

• Installed in the .git/hooks directory, but disabled by default.

• Samples are shell scripts, but any executable will work.

• local to repository.

• Run tests.

• Check code layout.

• Close tickets when written in the correct format.

• Twitter, facebook, email.

Too many branches?

master

UI

bugfix

feature

test

$ git branch
$ master
$ bugfix
$ feature
$ test
$ UI

Branches are cheap, but it can be distracting to have to deal with too many
of them.

master

UI

bugfix

feature

test

$ git branch
$ master
$ bugfix
$ feature
$ test
$ UI

master

UITag

bugfix

featureTag

testTag

$ git branch
$ master
$ bugfix

Replace them with tags so they don’t show up in the list of branches.
Recreate the branch by branching off the tag.

master

UITag

bugfix

featureTag

testTag

$ git branch
$ master
$ bugfix

Independent branches

master

bugfix

Documentation

master

bugfix

Documentation

Branches can be independent of each other. Related items such as
documentation, marketing screenshots, App Store copy etc. can be put
into their own branches.

Composition not inheritance

git submodules

• A git repository within a git repository. Can be recursive

• The super repository checks out the submodule at a specific
hash, so upstream changes will not suddenly appear.

• Two stage creation may seem odd, but it means that the
submodule that is part of the general repository need not be the
same as the local repository.

• Always push submodule changes before pushing super
repository changes.

Clean production branches

• It is common to have helper
classes that are developed
with scaffolding code.

• Create a production branch
that has this scaffolding
removed.

• Keep it up to date by
rebasing.

• Easy to import as
submodules.

master

Production

v2.0

v1.5

v1.0

Dessert

git blame

Cheese

Assert your mastery!

• You are capable of handling much bigger abstractions than git.

• You don’t take the easy way out with your code; do the same
with your version control.

• At the very least, remember the object model – blobs collected
into trees collected into commits. Branches, tags, remotes, notes,
are all simple constructs built on top of that.

Thank you!

• Coffee / liquers at
the Red Lion in
Kingly street

Abizer Nasir ◇ @abizern ◇ 365git.tumblr.com ◇ abizern.org

